Formalization of some central theorems in combinatorics of finite sets
نویسنده
چکیده
We present fully formalized proofs of some central theorems from combinatorics. These are Dilworth’s decomposition theorem, Mirsky’s theorem, Hall’s marriage theorem and the Erdős-Szekeres theorem. Dilworth’s decomposition theorem is the key result among these. It states that in any finite partially ordered set (poset), the size of a smallest chain cover and a largest antichain are the same. Mirsky’s theorem is a dual of Dilworth’s decomposition theorem, which states that in any finite poset, the size of a smallest antichain cover and a largest chain are the same. We use Dilworth’s theorem in the proofs of Hall’s Marriage theorem and the Erdős-Szekeres theorem. The combinatorial objects involved in these theorems are sets and sequences. All the proofs are formalized in the Coq proof assistant. We develop a library of definitions and facts that can be used as a framework for formalizing other theorems on finite posets.
منابع مشابه
Fixed point theorems for $alpha$-$psi$-contractive mappings in partially ordered sets and application to ordinary differential equations
In this paper, we introduce $alpha$-$psi$-contractive mapping in partially ordered sets and construct fixed point theorems to solve a first-order ordinary differential equation by existence of its lower solution.
متن کاملNew operators through measure of non-compactness
In this article, we use two concepts, measure of non-compactness and Meir-Keeler condensing operators. The measure of non-compactness has been applied for existence of solution nonlinear integral equations, ordinary differential equations and system of differential equations in the case of finite and infinite dimensions by some authors. Also Meir-Keeler condensing operators are shown in some pa...
متن کاملIntersection Theorems for Finite Sets and Geometric Applications
1. Introduction. Let X be an n-element set and F C 2 X a family of distinct subsets of X. Suppose that the members of F satisfy some conditions. What is the maximum (or minimum) value of |F|—this is the generic problem in extremal set theory. There have been far too many papers and results in this area to be overviewed in such a short paper. Therefore, we will only deal with some intersection t...
متن کاملA Multidimensional Central Sets Theorem
t∈α xt : α ∈ Pf (ω)}. A set A ⊆ N is called an IP-set iff there exists a sequence 〈xn〉n=0 in N such that FS(〈xn〉n=0) ⊆ A. (This definitions make perfect sense in any semigroup (S, ·) and we indeed plan to use them in this context. FS is an abbriviation of finite sums and will be replaced by FP if we use multiplicative notation for the semigroup operation.) Now Hindman’s Theorem states that in a...
متن کاملA Machine-Assisted Proof of Gödel's Incompleteness theorems for the Theory of Hereditarily Finite Sets
A formalization of Gödel’s incompleteness theorems using the Isabelle proof assistant is described. This is apparently the first mechanical verification of the second incompleteness theorem. The work closely follows Świerczkowski (2003), who gave a detailed proof using hereditarily finite set theory. The adoption of this theory is generally beneficial, but it poses certain technical issues that...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1703.10977 شماره
صفحات -
تاریخ انتشار 2017